\(\tan x \sim x\)
\[\lim\limits_{x\to 0 } \dfrac{\tan x}{x}=\lim\limits_{x \to 0 } \dfrac{\sin x}{x\cos x}=\lim \limits_{x\to 0 } \dfrac{\sin x}{x} \cdot \lim \limits_{x \to 0 } \dfrac{1}{\cos x}=1\]
\(1-\cos x \sim \dfrac{1}{2}x^2\)
\[\lim \limits_{x \to 0 } \dfrac{1-\cos x}{x^{2}}=\lim \limits_{x \to 0 } \dfrac{2 \sin ^{2} \dfrac{x}{2}}{4 \cdot\left(\dfrac{x}{2}\right)^{2}}=\dfrac{1}{2} \cdot\left(\lim \limits_{x \to 0 } \dfrac{\sin \dfrac{x}{2}}{\dfrac{x}{2}}\right)^{2}=\dfrac{1}{2}\]
另解: \[\lim \limits_{x \to 0 } \dfrac{1-\cos x}{x^{2}}=\lim \limits_{x \to 0 }\left(\dfrac{\sin ^{2} x}{x^{2}} \cdot \dfrac{1}{1+\cos x}\right)=\dfrac{1}{2}\]
\(\arcsin x \sim x\)
\(\arctan x \sim x\)
令\(t=\arctan x\), 则\(x=\tan t\),当\(x \rightarrow 0\) 时,\(t \rightarrow 0\).
\[\lim \limits_{x \to 0 } \dfrac{\arctan x}{x}=\lim \limits_{t \to 0 } \dfrac{t}{\tan t}=\lim \limits_{t \to 0 } \dfrac{t \cos t}{\sin t}=\lim \limits_{t \to 0 } \dfrac{t}{\sin t} \cdot \lim \limits_{t \to 0 } \cos t=1\]
\(\sec x-1 \sim \dfrac{x^{2}}{2}\)
\[\lim \limits_{x \to 0 } \dfrac{\dfrac{1}{\cos x}-1}{x^{2}}=\lim \limits_{x \to 0 } \dfrac{1-\cos x}{x^{2} \cdot \cos x}=\dfrac{\dfrac{1}{2} x^{2}}{x^{2} \cdot \cos x}=\dfrac{1}{2}\]
\(\tan x-\sin x \sim \dfrac{1}{2} x^{3}\)
\[\lim \limits_{x \to 0 } \dfrac{\tan x-\sin x}{\dfrac{1}{2} x^{3}}=\lim \limits_{x \to 0 } \dfrac{\tan x}{x} \cdot \dfrac{1-\cos x}{\dfrac{1}{2} x^{2}}=\lim \limits_{x \to 0 } \dfrac{\tan x}{x} \cdot \lim \limits_{x \to 0 } \dfrac{1-\cos x}{\dfrac{1}{2} x^{2}}=1\]
发表您的看法